Synthetic Studies Towards Complex Diterpenoids. Part 19. ${ }^{1}$ Total Synthesis of (\pm)-Deoxofaveline, (\pm)-Faveline Methyl Ether and (\pm)-Faveline

Ajit K. Ghosh, Chhanda Mukhopadhyay (née Ray) and Usha Ranjan Ghatak*
Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Calcutta - 700 032, India

Abstract

Simple and efficient syntheses have been developed for the cytotoxic dinorditerpenoids, (\pm) deoxofaveline 1, (\pm)-faveline methyl ether 2 and (\pm)-faveline 3 , having a hexahydrodibenzo[a, d]cycloheptene ring system, through the enolizable tricyclic ketone mixture 12 and 13, prepared from the easily accessible 2-arylethyl-3,3-dimethylcyclohexanone 7.

Recently, Endo et al. ${ }^{2}$ reported the isolation and elucidation of the gross structures of deoxofaveline 1 , faveline methyl ether 2 and faveline 3 from the bark of Cnidoscolus phyllocanthus (MART). PAX et K. Hoffm (Euphorbiaceae), representing a group of rearranged $9(10 \longrightarrow 20)$-abeo-16,17-dinorabieta-$8,11,13$-triene diterpenoids. Shortly thereafter, several structurally related ring-A oxygenated dinorditerpenoids were isolated ${ }^{3.4}$ from the Euphorbiaceae family, two of which were reported ${ }^{4}$ to exhibit activity against Escherichia coli and Staphylococcus aureus. The dinorditerpenoids 1, 2 and 3 display ${ }^{2}$ significant activity against P-388 murine leukaemia cells. A number of total syntheses of the rearranged $9(10 \longrightarrow 20)$ -abeo-abieta-8,11,13-triene diterpenoids (\pm)-isopisiferin $4,{ }^{1,5}(\pm)$-pisiferin $5 a^{6}$ and (\pm)-barbatusol $5 b^{7,8}$ have been recorded. We present in this paper the first total synthesis of the diterpenoids, (\pm)-deoxofaveline $1,{ }^{9}(\pm)$-faveline methyl ether 2^{9} and (\pm)-faveline 3^{9} following a converging general route ${ }^{1}$ developed for the tricyclic benzocycloheptene derivatives.

1

$2 \mathrm{R}=\mathrm{Me}$ $3 \mathrm{R}=\mathrm{H}$

5a $R^{1}=P^{j}, R^{2}=H$
5b $R^{1}=H, R^{2}=O H$

Results and Discussion

The known gem-dimethylcyclohexanone $7,{ }^{10}$ prepared from Hagemann's ester 6 in three steps (Scheme 1), was smoothly converted into the alkene 8 by a Wittig reaction. ${ }^{1,11}$ Hydroboration of the alkene 8 followed by oxidation ${ }^{12}$ with alkaline hydrogen peroxide gave an epimeric mixture of the alcohols 9 , which on oxidation with Jones reagent ${ }^{13}$ afforded an epimeric mixture of the acids 10 . Cyclization of the acids 10 with
polyphosphoric acid gave a mixture of the epimeric ketones 12 and 13 in a ratio of $c a .90: 10$, as revealed by their ${ }^{1} \mathrm{H}$ NMR spectrum. Recrystallization of this mixture afforded the major epimer 12 , m.p. $116-117^{\circ} \mathrm{C}$, assigned as cis stereochemistry by analogy. ${ }^{1,6}$ Reduction of the epimeric mixture of the ketones 12 and 13 (ca.9:1) followed by dehydration of the crude alcohol 14 with potassium hydrogen sulphate ${ }^{14}$ gave the styrene $15 \mathrm{~m} . \mathrm{p}$. $85-86^{\circ} \mathrm{C}$.

Deprotection of the O-methyl ether 15 proceeded smoothly with $\mathrm{NaH}-\mathrm{EtSH}$ in boiling dimethylformamide (DMF) ${ }^{15}$ to afford the crude phenol 1, in excellent overall yield, which was directly converted into the acetate 16, m.p. $159-160^{\circ} \mathrm{C}$. Finally, deacetylation of the acetate 16 with LiAlH_{4} regenerated (\pm)deoxofaveline 1, m.p. 148-149 ${ }^{\circ} \mathrm{C}$, having IR and ${ }^{1} \mathrm{H}$ NMR spectra identical with those of the natural deoxofaveline ${ }^{2}$ (see Experimental section). When the methyl ether 15 was subjected to demethylation with $\mathrm{AlCl}_{3}-\mathrm{EtSH}^{16}$ at room temperature, the tetracyclic dienone 17 was isolated in excellent yield, arising from an $\mathrm{Ar}_{1}-5$ cyclization of the intermediate phenol 1 through the carbocation 1a. This result is similar to that of the earlier observations in the demethylation of isopisiferin methyl ether ${ }^{1}$ and related compounds. ${ }^{1,6}$ The assigned structure of the dienone 17 was supported by its IR and UV spectra (see Experimental section). The ${ }^{1} \mathrm{H}$ NMR spectrum of 17 showed the olefinic Me doublet at $\delta 1.79(\mathrm{~J} 2 \mathrm{~Hz})$ coupled with the C-14 allylic hydrogen at $\delta 6.42(\mathrm{~d}, J 2 \mathrm{~Hz})$; the $\mathrm{C}-11$ olefinic proton singlet appeared at $\delta 6.10$. The synthesis of (\pm)-faveline methyl ether 2 was readily accomplished through the diastereoisomeric mixture of the alcohols 14 (Scheme 2). The diastereoisomeric mixture of the acetates 18 was oxidized with pyridinium chlorochromate (PCC)-Celite ${ }^{17}$ in refluxing dichloromethane ${ }^{17}$ to afford the benzylic ketone 19, which was hydrolysed and dehydrated to give (\pm)-faveline methyl ether 2 , in excellent overall yield, identical (IR and ${ }^{1} \mathrm{H}$ NMR) with the natural compound. ${ }^{2}$
The remaining problem of the O-demethylation in the conversion of the methyl ether 2 into (\pm)-faveline 3 turned out to be more difficult than initially anticipated. Thus, attempted demethylation of 2 with $\mathrm{NaH}-\mathrm{EtSH}$ in refluxing DMF ${ }^{15}$ led to the poorly soluble phenolic dienol 21 in 90% yield, involving migration of the exocyclic styrenoid bond, which was characterized through the diacetate 22 (Scheme 2). Likewise, O-demethylation of 2 with other reagents such as, $\mathrm{AlCl}_{3}-\mathrm{EtSH},{ }^{16}, \mathrm{BBr}_{3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}{ }^{18}$ or $\mathrm{Me}_{3} \mathrm{SiCl}-\mathrm{NaI}$ in acetonitrile ${ }^{19}$ gave intractable products, in each case. To overcome this problem, the deprotection of the phenolic methoxy group was carried out at early stage in the sequence leading to the synthesis of $(\pm)-3$ (Scheme 3).

Accordingly, the epimeric mixture of ketones 12 and 13 (ca. 9:1) was smoothly demethylated with $\mathrm{NaH}-\mathrm{EtSH}-\mathrm{DMF}$ to

${ }^{9} \mathrm{vii}$

$\|^{10}$

17
1a

Scheme 1 Reagents and conditions: $\mathrm{i}, \mathrm{Bu}^{t}-\mathrm{OK}-\mathrm{Bu}^{t}-\mathrm{OH}, \mathrm{H}^{+} ; \mathrm{ii}, \mathrm{KOH}-$ $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}, \mathrm{H}^{+}$; iii, $\mathrm{LiMe}_{2} \mathrm{Cu}-\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$; iv, Sodium tert-pentoxide$\mathrm{Ph}_{3} \mathrm{P}^{+} \mathrm{MeI}^{-}$-toluene; v, $\mathrm{B}_{2} \mathrm{H}_{6}$-THF; vi, $\mathrm{NaOH}-\mathrm{H}_{2} \mathrm{O}_{2}$; vii, Jones reagent; viii, $\mathrm{CH}_{2} \mathrm{~N}_{2}-\mathrm{Et}_{2} \mathrm{O}$; ix, $\mathrm{PPA} ; \mathrm{x}, \mathrm{NaBH}_{4}-\mathrm{EtOH}$; xi, KHSO_{4}, heat; xii, $\mathrm{NaH}-\mathrm{EtSH}-\mathrm{DMF}$, heat; xiii, $\mathrm{Ac}_{2} \mathrm{O}$-pyridine; xiv, $\mathrm{LiAlH}_{4}-\mathrm{Et}_{2} \mathrm{O}$; $\mathrm{xv}, \mathrm{EtSH}-\mathrm{AlCl}_{3}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$

Scheme 2 Reagents and conditions: i, $\mathrm{Ac}_{2} \mathrm{O}$-pyridine; ii, $\mathrm{PCC}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$, heat, 15 h ; iii, 2% methanolic $\mathrm{KOH}, \mathrm{H}^{+}$; iv, KHSO_{4}, heat; $\mathrm{v}, \mathrm{NaH}-$ EtSH-DMF, heat; vi, $\mathrm{Ac}_{2} \mathrm{O}$-pyridine

Scheme 3 Reagents and conditions: i, NaH-EtSH-DMF, heat; ii, $\mathrm{NaBH}_{4}-\mathrm{EtOH}$; iii, $\mathrm{Ac}_{2} \mathrm{O}$-pyridine; iv, PCC-benzene, heat, $18 \mathrm{~h} ; \mathrm{v}, 2 \%$ methanolic $\mathrm{KOH}, \mathrm{H}^{+}$; vi, $\mathrm{BBr}_{3}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$; vii, KHSO_{4}, heat
give the keto-phenols 23 which was reduced to the alcohols 24 and directly converted into the diacetates 25 , in excellent overall yield. The PCC-Celite oxidation ${ }^{17}$ of 25 in boiling benzene for 18 h furnished the desired ketone 26 in $\mathbf{4 2} \%$ yield. Attempted benzylic oxidation of the diacetates 25 with PCC-Celite in boiling methylene dichloride or CrO_{3} in acetic acid ${ }^{20}$ gave mostly the recovered diacetates, possibly due to the inactivation by the electron-withdrawing para O-acetate moiety. Alkaline hydrolysis of the keto diacetates 26 or direct treatment of O -methyl ketoacetates 19 with BBr_{3} in methylene dichloride gave the deprotected keto phenolic alcohols 27, which on dehydration with potassium hydrogen sulphate gave (\pm)faveline 3, m.p. $194-196^{\circ} \mathrm{C}$ in excellent yield, identical (IR and ${ }^{1} \mathrm{H}$ NMR) with the natural product. ${ }^{2}$

In conclusion, in the present work, a simple convergent route has been developed for three newly discovered cytotoxic rearranged dinorditerpenoids incorporating a hexahydro- 1 H dibenzo $[a, d]$ cycloheptene skeleton.

Experimental

The compounds described are all racemates. Unless otherwise stated, IR spectra of solids (KBr), and liquids (film) were recorded on a Perkin-Elmer model PE 298 instrument. UV Spectra were recorded on a Beckman DU spectrometer for solution in ethanol (95%). Unless otherwise stated, ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 200 MHz on an XL-200 and at 100 MHz on an FX-100 spectrometer for solution in CDCl_{3} with SiMe_{4} as internal standard, with J values given in Hz . Column chromatography was performed on neutral alumina (Brockmann Grade 1, of BDH, India) or silica-gel [Glaxo Laboratories (India) Ltd.]. Light petroleum refers to the fraction of b.p. $60-80^{\circ} \mathrm{C}$. Ether refers to diethyl ether. Elemental analyses were performed by S. K. Sarkar of this laboratory.

2-(4-Methoxy-3-methylphenethyl)-3,3-dimethyl-1-methylenecyclohexane 8.-A suspension of methyl(triphenyl)phosphonium iodide ($22.06 \mathrm{~g}, 54.74 \mathrm{mmol}$) in toluene ($5 \mathrm{~cm}^{3}$) and a toluene solution of freshly prepared sodium tert-pentoxide $\left(20.27 \mathrm{~cm}^{3}\right.$ of $2.7 \mathrm{~mol} \mathrm{dm}{ }^{-3}$) was stirred at room temperature $\left(25^{\circ} \mathrm{C}\right)$ for 20 \min. The ketone $7(5 \mathrm{~g}, 18.24 \mathrm{mmol})$ in toluene $\left(5 \mathrm{~cm}^{3}\right)$ was added dropwise and the mixture refluxed for 2 h . The cooled reaction mixture quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and the mixture extracted with ether. Evaporation of the extract yielded an oil which was immediately filtered through silica gel with light petroleum as eluent. The filtrate was evaporated to give an oil, which was dissolved in light petroleum $\left(10 \mathrm{~cm}^{3}\right)$ and to which methyl iodide $\left(3 \mathrm{~cm}^{3}\right)$ was added. The mixture was set aside at room temperature for 1 h after which the precipitated methyl(triphenyl)phosphonium iodide was filtered off and the filtrate concentrated under reduced pressure to give the pure alkene $8(4.6 \mathrm{~g}, 93 \%)$ as an oil, b.p. $140^{\circ} \mathrm{C}(0.1 \mathrm{~mm} \mathrm{Hg})$ (Found: $\mathrm{C}, 84.0 ; \mathrm{H}, 10.25 . \mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}$ requires $\mathrm{C}, 83.77 ; \mathrm{H}, 10.36$); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1640(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}} 0.83(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 0.91(3 \mathrm{H}, \mathrm{s}$, CMe), 2.21 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}$), $1.10-2.60(11 \mathrm{H}, \mathrm{m}), 3.80(3 \mathrm{H}, \mathrm{s}$, ArOMe), 4.63 and $4.83\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}=\mathrm{CH}_{2}\right), 6.76(1 \mathrm{H}, \mathrm{d}, J 8,5-\mathrm{ArH})$ and 6.96-7.06 ($2 \mathrm{H}, \mathrm{m}, 2$ and 6-ArH).
trans- and cis-[2-(4-Methoxy-3-methylphenethyl)3,3-dimethylcyclohexyl]methanol 9.-Diborane gas [prepared from $\mathrm{NaBH}_{4}(4.60 \mathrm{~g}, 119 \mathrm{mmol})$ and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}\left(18.4 \mathrm{~cm}^{3}, 146.7\right.$ $\mathrm{mmol})$ in diglyme $\left.\left(16.9 \mathrm{~cm}^{3}\right)\right]$ was passed through a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of the alkene $8(4 \mathrm{~g}, 14.8 \mathrm{mmol})$ in dry tetrahydrofuran (THF) ($15 \mathrm{~cm}^{3}$) for 2 h under a continuous slow stream of N_{2}. The cooled mixture was then carefully decomposed with water (ca. $0-10^{\circ} \mathrm{C}$) and added to aqueous $\mathrm{NaOH}\left(3 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 51\right.$ cm^{3}). To the well-stirred cooled mixture (ca. 0-10 ${ }^{\circ} \mathrm{C}$), $\mathrm{H}_{2} \mathrm{O}_{2}$ $\left(30 \% \mathrm{v} / \mathrm{v} ; 20 \mathrm{~cm}^{3}\right)$ was added dropwise. Stirring was continued for an additional 30 min after which further $\mathrm{H}_{2} \mathrm{O}_{2}\left(10 \mathrm{~cm}^{3}\right)$ was added to the mixture which was then set aside overnight. It was then extracted with ether and the extract washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to afford the alcohol $9(4.2 \mathrm{~g}$, 98.4%) as an oil, in a $c a .1: 2$ epimeric mixture (${ }^{1} \mathrm{H}$ NMR), b.p. $180^{\circ} \mathrm{C}(0.05 \mathrm{mmHg})$ (Found: $\mathrm{C}, 78.4 ; \mathrm{H}, 10.5 . \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{2}$ requires $\mathrm{C}, 78.57 ; \mathrm{H}, 10.41 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 3340(\mathrm{br}, \mathrm{OH}) ; \delta_{\mathrm{H}} 0.78$ and 0.90 (each $\mathrm{s}, \mathrm{CMe}_{2}$, minor epimer), 0.96 and 1.0 (each s , CMe_{2}, major epimer), $1.04-2.10(10 \mathrm{H}, \mathrm{m}), 2.22(3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe})$, $2.30-2.68\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2}\right), 3.46$ and $3.58\left(2 \mathrm{H}\right.$, each m, OCH_{2}, for the minor and the major epimers respectively), $3.80(3 \mathrm{H}, \mathrm{s}$, ArOMe), 6.77 ($1 \mathrm{H}, \mathrm{d}, J 8,5-\mathrm{ArH}$) and $7.00-7.06(2 \mathrm{H}, \mathrm{m}, 2$ and 6-ArH).
trans- and cis-Methyl 2-(4-Methoxy-3-methylphenethyl)-3,3dimethylcyclohexanecarboxylate 11.-The cooled alcohol 9 ($4 \mathrm{~g}, 13.79 \mathrm{mmol}$) in acetone ($50 \mathrm{~cm}^{3}$) was stirred with an excess of Jones reagent $\left(5.28 \mathrm{~cm}^{3}, 14 \mathrm{mmol}\right)$ for 45 min . After dilution with water, the mixture was extracted with ether. The ether extract was washed with aqueous $\mathrm{KOH}\left(0.36 \mathrm{~mol} \mathrm{dm}^{-3}\right.$; $60 \mathrm{~cm}^{3}$). The aqueous portion was acidified with $\mathrm{HCl}(6 \mathrm{~mol}$ $\left.\mathrm{dm}^{-3}\right)$ and work-up afforded the acid $10(2.64 \mathrm{~g}, 62 \%)$ as a thick glass $\left[v_{\max }(\right.$ film $\left.) / \mathrm{cm}^{-1} 1700\left(\mathrm{CO}_{2} \mathrm{H}\right)\right]$ which was used directly in the next step. A small portion of the acid 10 was esterified $\left(\mathrm{CH}_{2} \mathrm{~N}_{2}\right.$ in ether) to afford the esters 11 as a ca. 1:3 epimeric mixture (${ }^{1} \mathrm{H}$ NMR), b.p. $160^{\circ} \mathrm{C}(0.01 \mathrm{mmHg})$ (Found: $\mathrm{C}, 75.6$; $\mathrm{H}, 9.5 . \mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{3}$ requires C, $75.43 ; \mathrm{H}, 9.50 \%$); $v_{\max }($ film $) / \mathrm{cm}^{-1}$ 1735 (ester); $\delta_{\mathrm{H}} 0.80$ and 0.93 (each $\mathrm{s}, \mathrm{CMe}_{2}$, minor epimer), 0.98 and 1.03 (each $\mathrm{s}, \mathrm{CMe}_{2}$, major epimer), $1.06-2.00(9 \mathrm{H}, \mathrm{m})$, $2.20-2.86(3 \mathrm{H}, \mathrm{m}), 3.67$ and $3.73\left(3 \mathrm{H}\right.$, each s, $\mathrm{CO}_{2} \mathrm{Me}$, for the major and the minor epimers, respectively), $3.80(3 \mathrm{H}, \mathrm{s}$, ArOMe), 6.78 ($1 \mathrm{H}, \mathrm{d}, J 8,5-\mathrm{ArH})$ and $6.96-7.04(2 \mathrm{H}, \mathrm{m}, 2$ and 6-ArH).
cis-7-Methoxy-1,1,8-trimethyl-1,2,3,4,4a,10,11,11a-octahydro-dibenzo[a,d]cyclohepten-5-one 12 and its $\mathrm{C}-4 \mathrm{a}-E p i m e r ~ 13 .-$ To a well stirred homogeneous solution of polyphosphoric acid (PPA), prepared from $\mathrm{P}_{2} \mathrm{O}_{5}(24 \mathrm{~g})$ and $\mathrm{H}_{3} \mathrm{PO}_{4}\left(12 \mathrm{~cm}^{3}\right)$ was added the acid $10(2 \mathrm{~g}, 6.6 \mathrm{mmol})$ and the mixture was heated at $80-85^{\circ} \mathrm{C}$ for 2 h . The red mixture was cooled, decomposed with ice and extracted with ether. The ether extract was washed with aqueous $\mathrm{NaOH}\left(0.5 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 20 \mathrm{~cm}^{3}\right)$ and then evaporated to afford a solid stereoisomeric mixture of ketones 12 and 13 in a ratio of ca. 9:1 (${ }^{1} \mathrm{H} \mathrm{NMR}$) in 89% yield; $\delta_{\mathrm{H}} 0.74$ and 0.90 (each $\mathrm{s}, \mathrm{CMe}_{2}$ for the minor isomer), 0.97 and 0.98 (each $\mathrm{s}, \mathrm{CMe}_{2}$ for the major isomer), 1.16-2.26(9 H, m), $2.20(3 \mathrm{H}, \mathrm{s}$, ArMe), 2.60$3.22\left(3 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2}\right.$ and ArCOCH$), 3.85(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOMe}), 6.96-$ $7.07(1 \mathrm{H}, \mathrm{m}, 9-\mathrm{ArH})$ and $7.20-7.27(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{ArH})$. Recrystallization afforded the pure major isomer $12(1.34 \mathrm{~g}, 80 \%)$ m.p. 116-117 ${ }^{\circ} \mathrm{C}$ (ether-light petroleum) (Found: $\mathrm{C}, 79.8 ; \mathrm{H}, 9.1$. $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{2}$ requires $\mathrm{C}, 79.68 ; \mathrm{H}, 9.15 \%$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1670$ $(\mathrm{CO}) ; \lambda_{\max } / \mathrm{nm} 312(\log \varepsilon 3.41)$ and $262(\log \varepsilon 3.81) ; \delta_{\mathrm{H}} 0.98(3$ H, s, CMe), 0.99 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), 1.26-2.26 ($9 \mathrm{H}, \mathrm{m}$), 2.24 (3 H, s, ArMe), 2.70-3.24 (3 H, m, ArCH ${ }_{2}$ and ArCOCH), 3.85 ($3 \mathrm{H}, \mathrm{s}$, ArOMe), $7.01(1 \mathrm{H}, \mathrm{s}, 9-\mathrm{ArH})$ and $7.22(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{ArH}) ; m / z 286$ $\left(\mathrm{M}^{+}, 100 \%\right), 271\left(\mathrm{M}^{+}-\mathrm{Me}, 8\right), 217(28), 203(63), 189(25), 175$ (22), 163 (48), 135 (54) and 91 (22).

Reduction of the Mixture of 12 and 13 to the Epimeric Alcohols 14.- $\mathrm{NaBH}_{4}(0.916 \mathrm{~g}, 25.4 \mathrm{mmol})$ was added portionwise to a stirred solution of the ketone mixture 12 and 13 (ca. $9: 1)(1.19 \mathrm{~g}, 4.16 \mathrm{mmol})$ in $95 \% \mathrm{EtOH}\left(40 \mathrm{~cm}^{3}\right)$. The mixture was left overnight after which the excess of NaBH_{4} was decomposed with water. Work-up afforded the solid alcohol 14 $(1.0 \mathrm{~g}, 84 \%)$ as an epimeric mixture; $v_{\max } / \mathrm{cm}^{-1} 3340(\mathrm{OH}) ; \delta_{\mathrm{H}}$ 0.72 and 0.94 (each s, CMe_{2}, major isomer), 0.88 and 1.08 (each $\mathrm{s}, \mathrm{CMe}_{2}$ minor isomer), $1.0-2.0(8 \mathrm{H}, \mathrm{m}), 2.20(3 \mathrm{H}, \mathrm{s}$, ArMe), $2.02-2.28(2 \mathrm{H}, \mathrm{m}), 2.50-2.80\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2}\right), 3.84$ and 3.82 (3 H , each s , ArOMe for the major and the minor isomers), 4.66 and 5.02 (d, J 6 and br s, $1 \mathrm{H}, \mathrm{ArCHOH}$ in $c a .2: 1$ ratio respectively), 7.02 and $7.12(1 \mathrm{H}$, each $\mathrm{s}, 9-\mathrm{ArH}$, for the minor and the major isomer respectively). This epimeric mixture was used directly for the subsequent reactions.
(\pm)-Deoxyfaveline Methyl Ether 15.-The epimeric mixture of alcohols $14(1.4 \mathrm{~g}, 4.8 \mathrm{mmol})$ was fused with $\mathrm{KHSO}_{4}(1.32 \mathrm{~g}$, 9.6 mmol) at $140^{\circ} \mathrm{C}$ for 45 min and the resulting mixture was sublimed at $160^{\circ} \mathrm{C}(0.05 \mathrm{mmHg})$ to give the methyl ether (\pm)$15(1.17 \mathrm{~g}, 89 \%)$ as a colourless solid, m.p. $86^{\circ} \mathrm{C}$ (ether-light petroleum) (Found: $\mathrm{C}, 84.2 ; \mathrm{H}, 9.7 . \mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}$ requires $\mathrm{C}, 84.39$; $\mathrm{H}, 9.69 \%$); $v_{\max } / \mathrm{cm}^{-1} 1640(\mathrm{C}=\mathrm{C}) ; \lambda_{\max } / \mathrm{nm} 220(\log \varepsilon 4.38), 264$ $(\log \varepsilon 4.21)$ and $298(\log \varepsilon 3.75) ; \delta_{\mathrm{H}} 0.71(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 0.98(3$

H, s, CMe), $1.20-1.70(6 \mathrm{H}, \mathrm{m}), 2.18$ ($3 \mathrm{H}, \mathrm{s}$, ArMe), 2.08-2.48 ($3 \mathrm{H}, \mathrm{m}$), 2.50-2.70 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2}$), $3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOMe}$), 6.36 ($1 \mathrm{H}, \mathrm{br}, \mathrm{C}=\mathrm{CH}$), $6.64(1 \mathrm{H}, \mathrm{s}, 11-\mathrm{ArH})$ and $6.82(1 \mathrm{H}, \mathrm{s}, 14-\mathrm{ArH})$.
(\pm)-Deoxofaveline Acetate 16 .- $-\mathrm{EtSH}\left(1 \mathrm{~cm}^{3}, 11.76 \mathrm{mmol}\right)$ was added dropwise to a stirred suspension of $\mathrm{NaH}(40 \%$ dispersion in oil; $425 \mathrm{mg}, 7.4 \mathrm{mmol}$) in dry DMF ($10 \mathrm{~cm}^{3}$) under N_{2}. The ether 15 ($250 \mathrm{mg}, 0.93 \mathrm{mmol}$) was added to the mixture which was then refluxed for 4 h . After this it was cooled, diluted with water, acidified with $\mathrm{HCl}\left(2 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right)$ and extracted with ether. Work-up of the extract afforded the crude phenol $1(235 \mathrm{mg}$, 99%); $v_{\max } / \mathrm{cm}^{-1} 3360(\mathrm{br}$, phenolic OH$)$. The phenol $1(235 \mathrm{mg}$, $0.92 \mathrm{mmol})$ was stirred with pyridine $\left(15.3 \mathrm{~cm}^{3}\right)$ and $\mathrm{Ac}_{2} \mathrm{O}(7.6$ cm^{3}) overnight after which the mixture was diluted with water and extracted with ether. Work-up of the extract gave the acetate 16 ($240 \mathrm{mg}, 87.7 \%$), m.p. $159-160^{\circ} \mathrm{C}$ (ether-light petroleum) (Found: $\mathrm{C}, 80.5 ; \mathrm{H}, 8.75 . \mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{2}$ requires C , $80.49 ; \mathrm{H}, 8.75 \%$); $v_{\max } / \mathrm{cm}^{-1} 1755$ (phenolic ester) and 1640 $(\mathrm{C}=\mathrm{C}) ; \lambda_{\text {max }} / \mathrm{nm} 264(\log \varepsilon 4.32)$ and $213(\log \varepsilon 4.33) ; \delta_{\mathrm{H}} 0.72$ (3 $\mathrm{H}, \mathrm{s}, \mathrm{CMe}), 1.00(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 1.18-2.00(6 \mathrm{H}, \mathrm{m}), 2.12(3 \mathrm{H}, \mathrm{s}$, ArMe), 2.27 ($3 \mathrm{H}, \mathrm{s}$, ArOCOMe), $2.00-3.00(5 \mathrm{H}, \mathrm{m}), 6.23(1 \mathrm{H}$, $\mathrm{s}, \mathrm{C}=\mathrm{CH}), 6.76(1 \mathrm{H}, \mathrm{s}, 14-\mathrm{ArH})$ and $6.89(1 \mathrm{H}, \mathrm{s}, 11-\mathrm{ArH})$.
(\pm)-Deoxofaveline 1 .-The acetate $16(200 \mathrm{mg}, 0.67 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}\left(30 \mathrm{~cm}^{3}\right)$ was stirred at room temperature with LiAlH_{4} (110 mg) for 30 min , decomposed with cold saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and finally extracted with ether. Work-up of the extract afforded (\pm)-1 ($140 \mathrm{mg}, 81 \%$) as a colourless solid, m.p. 148$149{ }^{\circ} \mathrm{C}$ (lit., ${ }^{2}$ m.p. $149-151^{\circ} \mathrm{C}$; for the optically active 1) $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3590,3360 \mathrm{br}, 2930,2860 \mathrm{sh}, 2840,1615$ and $1585 ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3540,3520,2970 \mathrm{sh}, 2940,2900 \mathrm{sh}, 2860$, 2840, 1635, 1615 and $1585 ; \lambda_{\text {max }} / \mathrm{nm} 302(\log \varepsilon 3.52), 263(\log \varepsilon$ 4.07) and $223(\log \varepsilon 4.2) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.69(3 \mathrm{H}, \mathrm{s}$, CMe), 0.97 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), 1.32-1.65 (6 H, m), 2.11-2.39 (3 H, m, CH and ArCHCH_{2}), 2.18 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}$), $2.52-2.68(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{ArCH}_{2}\right), 4.44(1 \mathrm{H}, \mathrm{s}, \mathrm{ArOH}), 6.23(1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH}), 6.54(1 \mathrm{H}, \mathrm{s}$, $11-\mathrm{ArH})$ and $6.76(1 \mathrm{H}, \mathrm{s}, 14-\mathrm{ArH})$. The spectral data for 1 are identical with those of the naturally occurring optically active deoxofaveline. ${ }^{2}$

Demethylation of the O-Methyl Ether 15 with Aluminium Chloride-Ethanethiol: The Tetracyclic Dienone 17.-Anhydrous AlCl_{3} ($124 \mathrm{mg}, 0.93 \mathrm{mmol}$) was added to a stirred solution of compound $15(250 \mathrm{mg}, 0.93 \mathrm{mmol})$ and EtSH $\left(0.93 \mathrm{~cm}^{3}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ with cooling in an ice-bath. The mixture was stirred at $0^{\circ} \mathrm{C}$ for an additional 4 h and then left overnight. It was then poured into $\mathrm{HCl}\left(6 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right)$ and extracted with ether. Work-up of the extract afforded the crude dienone 17. The residue was chromatographed on silica gel and eluted with ether-light petroleum ($1: 5$ to $1: 4$) to afford the dienone 17 (230 $\mathrm{mg}, 97 \%$), m.p. $86-87^{\circ} \mathrm{C}$ (ether-light petroleum) (Found: C, 84.2; $\mathrm{H}, 9.4 . \mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}$ requires $\mathrm{C}, 84.32 ; \mathrm{H}, 9.44 \%$); $v_{\text {max }} / \mathrm{cm}^{-1}$ 1665 (dienone) and $1625(\mathrm{C}=\mathrm{C}) ; \lambda_{\text {max }} / \mathrm{nm} 255(\log \varepsilon 4.13) ; \delta_{\mathrm{H}}$ $0.96(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 1.06(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 1.79(3 \mathrm{H}, \mathrm{d}, J 2$, vinyl Me), 1.10-2.24 (13 H, m). $6.10(1 \mathrm{H}, \mathrm{s}, 11-\mathrm{H})$ and $6.42(1 \mathrm{H}, \mathrm{d}, J$ 2 14-H).

5-A cetoxy-7-methoxy-1,1,8-trimethyl-2,3,4,4a,5,10,11,11a-octahydro-1H-dibenzo[a,d]cycloheptene 18.-The epimeric mixture of alcohols $14(720 \mathrm{mg}, 2.5 \mathrm{mmol})$ was treated with pyridine ($41.6 \mathrm{~cm}^{3}$) and $\mathrm{Ac}_{2} \mathrm{O}\left(20.8 \mathrm{~cm}^{3}\right)$ and the mixture stirred overnight. Dilution of the mixture with water and extraction with ether afforded the acetate $18(700 \mathrm{mg}, 85 \%)$ as a liquid (Found: $\mathrm{C}, 76.2 ; \mathrm{H}, 9.1 . \mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{3}$ requires $\mathrm{C}, 76.32 ; \mathrm{H}, 9.15 \%$); $v_{\max } / \mathrm{cm}^{-1} 1730$ (acetate); $\delta_{\mathrm{H}} 0.75$ ($\mathrm{s}, \mathrm{CMe}_{2}$, minor isomer), 0.84 and 1.00 (each $\mathrm{s}, \mathrm{CMe}_{2}$, major isomer), $1.08-2.00(9 \mathrm{H}, \mathrm{m}), 2.06$ and $2.19(3 \mathrm{H}$, each s, OCOMe for the major and the minor isomer, partially overlapped with ArMe), 2.16 ($3 \mathrm{H}, \mathrm{s}$, ArMe),
2.38-3.26 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2}$), 3.83 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArOMe}$), 5.66 and 5.8 (br s, and d, J6, $1 \mathrm{H}, \mathrm{CHOCOMe}$, in ca. $1: 2$ ratio respectively), $6.84(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{ArH})$ and $6.90(1 \mathrm{H}, \mathrm{s}, 9-\mathrm{ArH})$.

5-Acetoxy-7-methoxy-1,1,8-trimethyl-1,2,3,4,4a,5,11,11a-octahydrodibenzo[a,d]cyclohepten-10-one 19.-To a well stirred solution of the acetate $18(200 \mathrm{mg}, 0.6 \mathrm{mmol})$ in dichloromethane ($10 \mathrm{~cm}^{3}$), was added a finely powdered and a homogenised mixture of PCC ($800 \mathrm{mg}, 3.6 \mathrm{mmol}$) and Celite $(800 \mathrm{mg}) .{ }^{17}$ The reaction mixture was refluxed for 15 h and then diluted with ether $\left(10 \mathrm{~cm}^{3}\right)$, filtered through a short pad of alumina, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to give the crude keto acetate 19. This was chromatographed over neutral alumina (15 g) and eluted with light petroleum-ether ($5: 1$ to $4: 1$) to give the keto acetate $19(124 \mathrm{mg}, 60 \%$) as a gummy liquid (Found: C, $73.0 ; \mathrm{H}$, 8.2. $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{4}$ requires $\mathrm{C}, 73.22 ; \mathrm{H}, 8.19 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1665$ (benzylic CO) and 1730 (acetate); $\lambda_{\text {max }} / \mathrm{nm} 276$ ($\log \varepsilon 3.92$) and $226(\log \varepsilon 4.13) ; \delta_{\mathrm{H}} 0.88\left(\mathrm{~s}, \mathrm{CMe}_{2}\right.$, major isomer), $0.92 \mathrm{~s}, \mathrm{CMe}_{2}$, minor isomer), $1.00-2.40(8 \mathrm{H}, \mathrm{m}), 1.96$ and $2.20(3 \mathrm{H}$, each s, OCOMe for the major and the minor isomer, partially overlapped with ArMe), 2.22 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}$), $2.60-2.90$ ($2 \mathrm{H}, \mathrm{m}$, ArCOCH_{2}), 3.90 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArOMe}$), 5.60 and 6.18 (s and d, J 6, $1 \mathrm{H}, \mathrm{CHOAc}$, in ca. $1: 2$ ratio respectively) 6.68 and $6.84(1 \mathrm{H}$, each $\mathrm{s}, 6-\mathrm{ArH}$ for the minor and the major isomer respectively) and $7.48-7.56(1 \mathrm{H}$, br s, 9-ArH for both the isomers).

5-Hydroxy-7-methoxy-1,1-8-trimethyl-1,2,3,4,4a,5,11,11aoctahydrodibenzo $[\mathrm{a}, \mathrm{d}]$ cyclohepten-10-one 20 .-The diastereoisomeric mixture of the keto acetates $19(440 \mathrm{mg}, 1.27$ mmol) was heated under reflux with methanolic KOH (0.36 mol $\mathrm{dm}^{-3} ; 20 \mathrm{~cm}^{3}$) for 2 h . The cooled reaction mixture was diluted with water and most of the methanol removed in vacuo. The product was extracted with ether and the extract worked up to afford the keto alcohol $20(0.378 \mathrm{~g}, 98 \%)$ as a thick gum (Found: $\mathrm{C}, 75.4 ; \mathrm{H}, 8.7 . \mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3}$ requires $\mathrm{C}, 75.46 ; \mathrm{H}, 8.67 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1660$ (benzylic CO); $\lambda_{\text {max }} / \mathrm{nm} 275(\log \varepsilon 4.19)$ and 225 ($\log \varepsilon 4.4$); $\delta_{\mathrm{H}} 0.86\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}\right), 1.00-2.00(8 \mathrm{H}, \mathrm{m}), 2.19(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{ArMe}), 2.30-3.00(2 \mathrm{H}, \mathrm{m}, \mathrm{ArCOCH})_{2}\right), 3.88$ and $3.90(3 \mathrm{H}$, each s, ArOMe for both the isomers), 4.51 and 5.06 (br s and d, $J 6,1 \mathrm{H}, \mathrm{ArCHOH}$, in ca. $2: 1$ ratio respectively), 6.57 and 7.00 (1 H , each $\mathrm{s}, 6-\mathrm{ArH}$, for the major and the minor isomer respectively) and 7.49 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, 9-\mathrm{ArH}$, for both the isomers).
(\pm)-Faveline Methyl Ether 2.-The keto alcohol $20(400 \mathrm{mg}$, $1.32 \mathrm{mmol})$ was fused with $\mathrm{KHSO}_{4}(363 \mathrm{mg}, 2.64 \mathrm{mmol})$ at $140^{\circ} \mathrm{C}$ for 45 min and the resulting mixture was sublimed to give $(\pm)-2\left(360 \mathrm{mg}, 96 \%\right.$), m.p. $139-140^{\circ} \mathrm{C}$ (lit., ${ }^{2}$ m.p. $135-$ $136^{\circ} \mathrm{C}$ for the optically active 2); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2930 \mathrm{br}$, 2840, 1660 (benzylic CO) and $1600 ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2970$, 2940sh, 2920, 2850, 1655 (benzylic CO) and $1600 ; \lambda_{\max } / \mathrm{nm} 344$ ($\log \varepsilon$ 3.80), $301(\log \varepsilon 3.95), 260(\log \varepsilon 4.74), 254 \operatorname{sh}((\log \varepsilon$ $4.51)$ and $202(\log \varepsilon 4.05) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.76(3 \mathrm{H}, \mathrm{s}$, CMe), 1.12 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), 1.42-1.62 (2 H, m), 1.64-1.76 (2 H, m), 2.18 ($3 \mathrm{H}, \mathrm{s}$, ArMe), 2.28-2.37 (3 H, m), 3.01-3.03 ($2 \mathrm{H}, \mathrm{m}$, ArCOCH 2), 3.87 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArOMe}$), 6.29 ($1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH}$), 6.59 ($1 \mathrm{H}, \mathrm{s}, 11-\mathrm{ArH}$) and $7.62(1 \mathrm{H}, \mathrm{s}, 14-\mathrm{ArH})$. The spectral data are identical with those of the naturally occurring optically active faveline methyl ether. ${ }^{2}$

Demethylation of 2 with DMF-NaH-EtSH: 7,10-Diacetoxy-1,1,8-trimethyl-2,3,4,5-tetrahydro-1 H-dibenzo[a,d]cycloheptene 22.-The keto ether, $2(250 \mathrm{mg}, 0.88 \mathrm{mmol})$ was subjected to dimethylation with $\mathrm{EtSH}\left(0.8 \mathrm{~cm}^{3}, 9.4 \mathrm{mmol}\right)$ and $\mathrm{NaH}(40 \%$ dispersion in oil; $400 \mathrm{mg}, 6.2 \mathrm{mmol}$) in dry DMF ($10 \mathrm{~cm}^{3}$) as described for the preparation of 1 , to give the diol $21(213 \mathrm{mg}$, 90%) as a poorly soluble amorphous white solid, which was treated with pyridine $\left(12.9 \mathrm{~cm}^{3}\right)$ and $\mathrm{Ac}_{2} \mathrm{O}\left(6.5 \mathrm{~cm}^{3}\right)$. The mixture was stirred overnight, and then diluted with water and
extracted with ether. Work-up of the extract gave 22 (248 mg , 89%) as a colourless solid, m.p. $159-160^{\circ} \mathrm{C}$ (ether-light petroleum) (Found: $\mathrm{C}, 74.6 ; \mathrm{H}, 7.4 . \mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{4}$ requires C , 74.55; $\mathrm{H}, 7.39 \%$) ; $v_{\max } / \mathrm{cm}^{-1} 1750-1760$ (acetates) and $1635(\mathrm{C}=\mathrm{C})$; $\lambda_{\text {max }} / \mathrm{nm} 286(\log \varepsilon 3.84)$ and $210(\log \varepsilon 4.47) ; \delta_{\mathrm{H}} 1.02(6 \mathrm{H}, \mathrm{s}$, CMe_{2}), 1.32-1.60 ($6 \mathrm{H}, \mathrm{m}$), 2.16 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}$), 2.28 ($3 \mathrm{H}, \mathrm{s}$, 10-OCOMe), $2.32(3 \mathrm{H}, \mathrm{s}, 7$-ArOCOMe), $2.96(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{ArCH}_{2}\right), 6.4(1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH}), 6.84(1 \mathrm{H}, \mathrm{s}, 9-\mathrm{ArH})$ and $7.20(1$ H, s, 6-ArH).
cis-andtrans-7-Hydroxy-1,1,8-trimethyl-1,2,3,4,4a, 10,11,11aoctahydrodibenzo[a, d]cyclohepten-5-one 23.-The mixture of the epimeric ketones (ca.9:1) 12 and $13(400 \mathrm{mg}, 1.4 \mathrm{mmol})$ was demethylated with $\mathrm{EtSH}\left(1.18 \mathrm{~cm}^{3}, 13.8 \mathrm{mmol}\right)$ and $\mathrm{NaH}(40 \%$ dispersion in oil; $699 \mathrm{mg}, 10.9 \mathrm{mmol}$) in dry DMF ($13.9 \mathrm{~cm}^{3}$) in the same way as described for compound 15 , to give the keto phenol 23 ($361 \mathrm{mg}, 95 \%$) as a solid, m.p. $200-217^{\circ} \mathrm{C}$ (ether-light petroleum) (Found: $\mathrm{C}, 79.4 ; \mathrm{H}, 8.85 . \mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{2}$ requires C , $79.37 ; \mathrm{H}, 8.88 \%$); $v_{\max } / \mathrm{cm}^{-1} 3400$ (phenolic OH), $1655(\mathrm{CO})$ and 1605; $\lambda_{\max } / \mathrm{nm} 229(\log \varepsilon 4.16), 262(\log \varepsilon 3.84)$ and $315(\log \varepsilon$ 3.4); $\delta_{\mathrm{H}} 0.76$ and 0.92 (each $\mathrm{s}, \mathrm{CMe}_{2}$, for the minor isomer), 1.00 (s, CMe_{2}, for the major isomer), $1.13-2.20(9 \mathrm{H}, \mathrm{m}), 2.24(3 \mathrm{H}, \mathrm{s}$, ArMe), 2.60-3.24 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2}$ and CHCOAr), $5.96(1 \mathrm{H}$, br, ArOH), $6.93(1 \mathrm{H}$, br s, 9-ArH), 7.30 and $7.46(1 \mathrm{H}$, each s, 6-ArH for the major and the minor isomers); $m / z 272\left(\mathrm{M}^{+}\right.$, $98 \%) 257\left(\mathrm{M}^{+}-\mathrm{Me}, 8\right), 203(44), 189$ (100), 176 (41), 161 (42), 150 (45), 121 (82) and 91 (59).

5,7-Diacetoxy-1,1,8-trimethyl-2,3,4,4a,5,10,11,11a-octahydro-1H-dibenzo[a,d]cycloheptene 25.-The diastereoisomeric mixture of the keto phenol $23(575 \mathrm{mg}, 2.1 \mathrm{mmol})$ was reduced with $\mathrm{NaBH}_{4}(462 \mathrm{mg}, 12.0 \mathrm{mmol})$ in $\mathrm{EtOH}\left(15 \mathrm{~cm}^{3}\right)$ following the same procedure as described for the preparation of compound 14, to give $24(506 \mathrm{mg})$ as a liquid. This was directly acetylated with pyridine $\left(34.4 \mathrm{~cm}^{3}\right)$ and $\mathrm{Ac}_{2} \mathrm{O}\left(17.2 \mathrm{~cm}^{3}\right)$ by the method described for the preparation of compound 16, to give 25 (632 $\mathrm{mg}, 95 \%$) as a semi-solid liquid. (Found: $\mathrm{C}, 73.8 ; \mathrm{H}, 8.5$. $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{4}$ requires $\mathrm{C}, 73.71 ; \mathrm{H}, 8.44 \%$); $v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 1735$ (acetate) and 1760 (phenolic ester); $\delta_{\mathrm{H}} 0.71$ and 0.74 (each s, CMe of minor cis-ring isomer), 0.93 and 0.97 (each s, CMe_{2} major cis-ring isomer), 0.82 and 1.02 (very small signals, possibly due to CMe_{2} of trans-isomer), $1.08-2.00(10 \mathrm{H}, \mathrm{m})$, 2.02 and $2.10(3 \mathrm{H}$, each s , OCOMe, for the minor and the major cis-ring isomer respectively), $2.14(3 \mathrm{H}, \mathrm{s}$, ArMe), 2.28 and $2.30(3 \mathrm{H}$, each s, ArOCOMe of minor and major cis-ring isomer respectively), 2.18 and 2.34 (very small signals, possibly due to OCOMe and ArOCOMe respectively of the trans isomer), $2.50-3.10\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2}\right), 5.62$ and 5.84 (br s and d, $J 6,1 \mathrm{H}, \mathrm{CHOAc}$, in ca. 1:2 ratio) and $6.94(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 6$ and 9-ArH).

5,7-Diacetoxy-1,1,8-trimethyl-1,2,3,4,4a,5,11,11a-octahydro-dibenzo[a,d]cyclohepten-10-one 26.-To a well stirred suspension of PCC $(1 \mathrm{~g}, 4.5 \mathrm{mmol})$ and Celite $(1 \mathrm{~g})$ in benzene $\left(6 \mathrm{~cm}^{3}\right)$ a solution of the diacetate $25(250 \mathrm{mg}, 0.69 \mathrm{mmol})$ in benzene $\left(2 \mathrm{~cm}^{3}\right)$ was added. The mixture was refluxed for 18 h , and then the reaction mixture was worked-up as described for the preparation of compound 19. Chromatography of the crude product on neutral alumina (30 g) and elution with ether-light petroleum ($1: 9$ to $1: 4$) gave the keto diacetate $26(110 \mathrm{mg}, 42 \%$) as a semi-solid (Found: $\mathrm{C}, 70.9 ; \mathrm{H}, 7.6 . \mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{5}$ requires C , $70.94 ; \mathrm{H}, 7.58 \%$); $v_{\max } / \mathrm{cm}^{-1} 1675(\mathrm{CO}), 1730$ (acetate) and 1750 (phenolic ester); $\lambda_{\text {max }} / \mathrm{nm} 250(\log \varepsilon 3.85)$ and $215(\log \varepsilon 4.2)$; $\delta_{\mathrm{H}} 0.86\left(\mathrm{~s}, \mathrm{CMe}_{2}\right.$, major isomer), $0.90(\mathrm{~s}, \mathrm{CMe}$, minor isomer), $1.00-2.04(8 \mathrm{H}, \mathrm{m}), 1.92$ and $2.16(3 \mathrm{H}$, each $\mathrm{s}, \mathrm{CHOCOMe}$ for the major and the minor isomer, partially overlapped with ArMe), 2.20 ($3 \mathrm{H}, \mathrm{s}$, ArMe), 2.32 (3 H, s, ArOCOMe), 2.50-2.90 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ArCOCH}_{2}\right), 5.56$ and 6.10 (br s and d, $J 6,1 \mathrm{H}, \mathrm{CHOAc}$
in $c a .2: 1$ ratio respectively), 6.96 and $7.08(1 \mathrm{H}$, each s, 6-ArH, for the major and the minor isomer respectively) and $7.53(1 \mathrm{H}$, br s, 9-ArH for both the isomers).

5,7-Dihydroxy-1-(1,8-trimethyl-1,2,3,4,4a,5,11,11a-octahydro-dibenzo[a,d]cyclohepten-10-one 27.-(a) Hydrolysis of the diastereoisomeric mixture of the keto diacetates 26. The keto diacetate $26(220 \mathrm{mg}, 0.59 \mathrm{mmol})$ was hydrolysed with methanolic $\mathrm{KOH}\left(0.36 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 30 \mathrm{~cm}^{3}\right)$ by the procedure described for compound 19, to give compound $27(160 \mathrm{mg}$, 94%) m.p. $154^{\circ} \mathrm{C}$ (ether-light petroleum) (Found: C, $75.0 ; \mathrm{H}$, 8.4. $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{3}$ requires $\left.\mathrm{C}, 74.97 ; \mathrm{H}, 8.39 \%\right) ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ $1675(\mathrm{CO})$ and $1600 ; \lambda_{\max } / \mathrm{nm} 280(\log \varepsilon 3.84), 230(\log \varepsilon 4.03)$ and $215(\log \varepsilon 3.97) ; \delta_{\mathrm{H}} 0.86\left(6 \mathrm{H}\right.$, br s, $\left.\mathrm{CMe}_{2}\right), 1.16-2.08(8 \mathrm{H}$, m) 2.21 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}$), $2.40-2.80\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ArCOCH}_{2}\right), 4.46$ and 5.00 (br s and d, $J 6,1 \mathrm{H}, \mathrm{ArCHOH}$, in ca. 2;1 ratio), 6.48 and $6.82(1 \mathrm{H}$, each $\mathrm{s}, 6-\mathrm{ArH}$ for the major and the minor isomers respectively) and 7.42 and $7.46(1 \mathrm{H}$, each $\mathrm{s}, 9-\mathrm{ArH}$, for the major and the minor isomers respectively).
(b) Demethylation and deacetylation of 19 with boron tribromide. To a well stirred solution of the acetate $19(200 \mathrm{mg}$, 0.58 mmol) in dry dichloromethane $\left(5 \mathrm{~cm}^{3}\right)$, boron tribromide $\left(0.3 \mathrm{~cm}^{3}\right)$ in dry dichloromethane $\left(5 \mathrm{~cm}^{3}\right)$ was added dropwise at $0^{\circ} \mathrm{C}$. After addition was completed the reaction mixture allowed to stand at the same temperature for a further 2 h and finally for overnight at room temperature. The mixture was poured into ice and extracted with ether to afford compound 27 ($130 \mathrm{mg}, 78 \%$) identical (IR, ${ }^{1} \mathrm{H}$ NMR) with the sample described above.
(\pm)-Faveline 3.-The keto diol $27(200 \mathrm{mg}, 0.694 \mathrm{mmol})$ was fused with $\mathrm{KHSO}_{4}(190 \mathrm{mg}, 1.38 \mathrm{mmol})$ at $140^{\circ} \mathrm{C}$ for 45 min and the resulting mixture was sublimed at $180^{\circ} \mathrm{C}(0.05 \mathrm{mmHg})$ to give (\pm)-faveline 3, m.p. $194-196^{\circ} \mathrm{C}$ (lit., ${ }^{2} 192-194^{\circ} \mathrm{C}$ for optically active 3); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3580,3260 \mathrm{br}, 2930,2850$, $1660(\mathrm{CO})$ and $1605 ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3240 \mathrm{br}, 2960 \mathrm{sh}, 2930$, $2850,1655(\mathrm{CO})$ and $1590 ; \lambda_{\text {max }} / \mathrm{nm} 301(\log \varepsilon 3.6)$ and 260 $(\log \varepsilon 4.2) ; \delta_{\mathrm{H}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.75(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 1.10(3 \mathrm{H}, \mathrm{s}$, CMe), $1.30-2.30(6 \mathrm{H}, \mathrm{m}), 2.21(3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}), 2.36(1 \mathrm{H}, \mathrm{m}, \mathrm{CH})$, $3.00-3.07\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ArCOCH}_{2}\right), 6.20(1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH}), 6.60(1 \mathrm{H}, \mathrm{s}$, 11-ArH) and $7.64(1 \mathrm{H}, \mathrm{s}, 14-\mathrm{ArH})$. The spectral data for 3 are identical with those of the naturally occurring optically active faveline. ${ }^{2}$

Acknowledgements

We gratefully acknowledge Professor S. Nozoe for the generous samples and spectra of deoxofaveline, faveline methyl ether and faveline. We thank C.S.I.R., New Delhi for the award of S.R.F. to A. K. G. and financial support through grant No. 02(368)/92/EMR-11.

References

1 Part 18, S. Deb, G. Bhattacharjee and U. R. Ghatak, J. Chem. Soc., Perkin Trans. 1, 1990, 1453.
2 Y. Endo, T. Ohta and S. Nozoe, Tetrahedron Lett., 1991, 32, 3083.
3 S. F. Kimbu, F. Keumedjio, L. B. Sondengam and J. D. Connolly, Phytochemistry, 1991, 30, 619.
4 X. A. Dominguez, H. Sanchez V., S. Garcia G., G. Espinosa B., H. J. Williams, C. Ortiz, A. I. Scott and J. H. Reibenspies, J. Nat. Prod., 1992, 55, 221.
5 T. Kametani, H. Kondoh, M. Tsubuki and T. Honda, J. Chem. Soc., Perkin Trans. I, 1990, 5.
6 T. Matsumoto, S. Imai, T. Yoshinari and S. Maisuno, Bull. Chem. Soc. Jpn., 1986, 59, 3103.
7 E. R. Koft, Tetrahedron, 1987, 43, 5775.
8 G. Majetich, Y. Zhang, T. L. Feltman and S. Duncass, Jr., Tetrahedron Lett., 1993, 34, 445.
9 Preliminary communiation: A. K. Ghosh, C. Ray and U. R. Ghatak, Tetrahedron Lett., 1992, 33, 655.

10 B. K. Banik, S. Ghosh and U. R. Ghatak, Tetrahedron, 1988, 44, 6947.

11 J. M. Conia and J. C. Limasset, Bull. Soc. Chim. Fr., 1967, 6, 1936.
12 H. O. House, W. E. Hanners and E. J. Reach, J. Org. Chem., 1972, 37, 985.

13 A. Bowers, T. C. Halsall, E. R. H. Jones and A. J. Lemin, J. Chem. Soc., 1953, 2548.
14 A. Chatterjee, D. Banerjee and R. Mallik, Tetrahedron, 1977, 33, 85. 15 G. I. Feutrill and R. N. Mirrington, Tetrahedron Lett., 1970, 1327.
16 M. Node, K. Nishide, M. Sai, K. Ichikawa, K. Fuji and E. Fujita, Chem. Lett., 1979, 97.
17 (a) R. Rathore, N. Saxena and S. Chandrasekaran, Synth. Commun., 1986, 16, 1493; (b) J. L. Maurer, F. Berchier, A. J. Serino, C. B.

Knobler and M. F. Hawthorne, J. Org. Chem., 1990, 55, 838; (c) S. Ghosh, B. K. Banik and U. R. Ghatak, J. Chem. Soc., Perkin Trans. 1, 1991, 3195.
18 U. R. Ghatak, S. K. Alam and J. K. Ray, J. Org. Chem., 1978, 43, 4598.

19 M. V. Bhatt and J. R. Babu, Tetrahedron Lett., 1984, 25, 3497.
20 U. R. Ghatak, N. R. Chatterjee, A. K. Banerjee, J. Chakravarty and R. E. Moore, J. Org. Chem., 1969, 34, 3739.

Paper 3/04116F
Received 13th July 1993
Accepted 1st September 1993

